第四百五十二章 截然不同的结果(上)(第6/9 页)

走进不科学荒木泽代 新手钓鱼人 980 字 2024-04-21 09:31:48
🎁美女直播

所以此时他的心思压根就没去考虑什么期待或者信任,而是一心投放到了数据的计算上。

毕竟这是最后的boss了。

有着狄利克雷的加持,徐云的脑海显得一片清明。

唰唰唰——

大量的公式随着笔尖的移动,一个接一个的出现在了算纸上。

模量平方算符中同时含有位置算符与动量算符,二者存在一种很精确的对易关系。

如果是通过现象测得的微粒,推导起来其实是很容易的,套模板就行了。

但问题是‘冥王星’粒子并没有被捕捉过,所以推导过程就非常麻烦了。

而徐云这次准备的切入点是.....

庞加来群。

因为庞加来群有个很特殊的地方:

它的表示可以完全由其迷向子群及诱导表示决定。

借助poincare群万有覆盖的小群在自旋空间上的表示,即可得到该万有覆盖在希尔伯特空间上的不可约幺正表示,即诱导表示。

不同的迷向子群给出不同的诱导表示,对应不同的单粒子态。

即粒子的不可约幺正表示,是完全由时空的基本对称性决定了的,不会有其他因素干扰。

嗯,上面这段话是标准的汉字和人话。

过了片刻。

徐云在密级的计算内容下方,写下了算符l^z本征值为m的本征态:

l^+ψm=cψm+1......

同时[l^z,l^+]=l^+可得l^zl^+=l^++l^+l^z=l^+1+l^z,所以可见l^+相当于一个生成算符,l^?相当于一个湮灭算符。

它们使得l^z的本征值总是依次递增或递减整数1,当角动量的模量平方取定且l^z的最大本征值为m=l-1时,则必有l^+ψl=0。

看到这里。

可能有部分众所周同学就感觉有些奇怪了:

为什么最大本征值是m=l-1呢,不应该是等于l吗?

原因很简单。

因为当角动量的模量平方取定且l为m的量最大允许值时,本征值为l+1的态是不存在的。

由于系统总可以处于轨道角动量为0的状态,所以0必是分量算符l^z的一个本征值。

而由l^+与l^?的行为可知,对于角动量分量算符l^z,它的相邻本征值之间总是相差一个